

Titration Practice Worksheet

Find the requested quantities in the following problems:

1) If it takes 54 mL of 0.1 M NaOH to neutralize 125 mL of an HCl solution, what is the concentration of the HCl?

$$M_1 = 0.1 \text{ M}$$

$$V_1 = 54 \text{ mL}$$

$$M_2 = ?$$

$$V_2 = 125 \text{ mL}$$

$$M_1 V_1 = M_2 V_2$$

$$(0.1 \text{ M})(54 \text{ mL}) = (125 \text{ mL}) M_2$$

$$M_2 = \frac{(0.1 \text{ M})(54 \text{ mL})}{125 \text{ mL}} = 0.0432 \text{ M} = 4.32 \times 10^{-2} \text{ M}$$

The concentration of HCl is $4.32 \times 10^{-2} \text{ M}$.

2) If it takes 25 mL of 0.05 M HCl to neutralize 345 mL of NaOH solution, what is the concentration of the NaOH solution?

$$M_1 = 0.05 \text{ M}$$

$$V_1 = 25 \text{ mL}$$

$$M_2 = ?$$

$$V_2 = 345 \text{ mL}$$

$$M_1 V_1 = M_2 V_2$$

$$(0.05 \text{ M})(25 \text{ mL}) = (345 \text{ mL}) M_2$$

$$M_2 = \frac{(0.05 \text{ M})(25 \text{ mL})}{345 \text{ mL}} = 0.00362 \text{ M} = 3.62 \times 10^{-3} \text{ M}$$

The concentration of NaOH is $3.62 \times 10^{-3} \text{ M}$.

3) If it takes 50 mL of 0.5 M KOH solution to completely neutralize 125 mL of sulfuric acid solution (H_2SO_4), what is the concentration of the H_2SO_4 solution?

$$\text{H}^+ : \text{OH}^- \text{ is } 2:1 \quad [\text{H}^+] = \frac{25 \text{ mol}}{2} = 12.5 \text{ mol H}^+ \text{ needed}$$

$$n = MV$$

$$n = (0.5 \text{ M})(50 \text{ mL}) = 25 \text{ mol OH}^-$$

2 times $[\text{OH}^-]$ is needed

to neutralize $[\text{H}^+]$, $\rightarrow [\text{H}^+] = \frac{1}{2} [\text{OH}^-]$

$$M = \frac{12.5 \text{ mol}}{125 \text{ mL}} = 0.10 \text{ M}$$

4) Can I titrate a solution of unknown concentration with another solution of unknown concentration and still get a meaningful answer? Explain your answer in a few sentences.

Titration cannot be done without molality of at least one of the substances. In order to solve $M_1 V_1 = M_2 V_2$, both molarities cannot be unknown.

5) Explain the difference between an endpoint and equivalence point in a titration.

Endpoint: titration can be stopped.

Equivalence point: when $[\text{H}^+]$ and $[\text{OH}^-]$ are neutralized.

The effectiveness of a titration is measured by the closeness of the end point to the equivalence point.

KEY

6) How many moles of LiOH are needed to exactly neutralize 2.0 moles of H_2SO_4 ?

1 mol H_2SO_4 dissociates into 2 mol H^+ ions

For 2 mol H_2SO_4 , there are 4 mol H^+ ions

4 mol H^+ needs 4 mol OH^-

4 mol LiOH are needed.

7) How many moles of H_2SO_4 are needed to exactly neutralize 5.0 moles of NaOH?

1 mol NaOH dissociates into 1 mol OH^- ions

For 5 mol NaOH, there are 5 mol OH^- ions

$$\frac{1}{2} (5 \text{ mol}) = 2.5 \text{ mol}$$

1 mol H_2SO_4 dissociates into 2 mol H^+ ions.

Need $\frac{1}{2}$ of the $[\text{OH}^-]$ to neutralize H^+

2.5 mol H_2SO_4 needed

8) How many moles of HCl are needed to neutralize 0.10 L of 2.0 M NaOH?

1 mol NaOH dissociates into 1 mol OH^- ; 1 mol HCl dissociates into 1 mol

Find mol of OH^- :

$$n = MV = (2.0 \text{ M})(0.10 \text{ L})$$

$$n = 0.20 \text{ mol}$$

0.20 mol of HCl needed.

9) How many moles of NaOH are needed to neutralize 0.010 L of 0.20 M H_2SO_4 ?

1 mol NaOH dissociates into 1 mol OH^- ; 1 mol H_2SO_4 dissociates into 2 mol H^+

Find mol of H^+ ions

$$n = MV = (0.20 \text{ M})(0.010 \text{ L})$$

$$n = 0.0020 \text{ mol } \text{H}_2\text{SO}_4 \rightarrow 0.0040 \text{ mol } \text{H}^+$$

For 0.0040 mol H^+ ions, need 0.0040 mol OH^- ions

0.0040 mol NaOH ions needed.

10) If it takes 15.0 mL of 0.40 M NaOH to neutralize 5.0 mL of HCl, what is the molar concentration of the HCl solution?

$$M_1 = 0.40 \text{ M}$$

$$V_1 = 15.0 \text{ mL}$$

$$M_2 = ?$$

$$V_2 = 5.0 \text{ mL}$$

$$M_1 V_1 = M_2 V_2$$

$$(0.40 \text{ M})(15.0 \text{ mL}) = (5.0 \text{ mL})(M_2)$$

$$M_2 = \frac{(0.40 \text{ M})(15.0 \text{ mL})}{5.0 \text{ mL}} = 1.2 \text{ M}$$

The molar concentration of HCl is 1.2 M.

11) If it takes 10.0 mL of 2.0 M H_2SO_4 to neutralize 30.0 mL of KOH, what is the molar concentration of the KOH?

1 mol H_2SO_4 dissociates into 2 mol H^+

$$n = MV = (2.0 \text{ M})(10.0 \text{ mL}) = 20 \text{ mol}$$

20 mol of $\text{H}_2\text{SO}_4 \rightarrow 40 \text{ mol } \text{H}^+$

need 40 mol OH^-

1 mol KOH dissociates into 1 mol OH^-

$$n = MV$$

$$40 \text{ mol} = M(30.0 \text{ mL})$$

$$M = \frac{40 \text{ mol}}{30 \text{ mL}} = 1.33 \text{ M KOH}$$

12) How many mL of 2.0 M H_2SO_4 are required to neutralize 30.0 mL of 1.0 M NaOH?

1 mol H_2SO_4 dissociates into 2 mol H^+

$$n = MV = (1.0 \text{ M})(30.0 \text{ mL}) = 30.0 \text{ mol}$$

30 mol NaOH \rightarrow 30 mol OH^-

need $\frac{1}{2}$ (30 mol) $\text{H}_2\text{SO}_4 \rightarrow \frac{1}{2} (30 \text{ mol}) \text{H}_2\text{SO}_4$

1 mol NaOH dissociates into 1 mol OH^-

$$n = MV$$

$$15.0 \text{ mol} = (2.0 \text{ M})(V)$$

$$V = \frac{15.0 \text{ mol}}{2.0 \text{ M}} = 7.5 \text{ mL } \text{H}_2\text{SO}_4 \text{ needed}$$

13) How many mL of 0.10 M $\text{Ca}(\text{OH})_2$ are required to neutralize 25.0 mL of 0.50 M HNO_3 ? 1 mol $\text{Ca}(\text{OH})_2$ dissociates into 2 mol OH^-

$$n = MV = (0.50 \text{ M})(25.0 \text{ mL})$$

$$n = 12.50 \text{ mol } \text{HNO}_3$$

$$\downarrow$$

$$12.50 \text{ mol } \text{H}^+ = 12.50 \text{ mol } \text{OH}^-$$

12.50 mol OH^- comes from

$$\frac{1}{2} (12.50 \text{ mol}) \text{Ca}(\text{OH})_2$$

need 6.25 mol $\text{Ca}(\text{OH})_2$

$$n = MV$$

$$6.25 \text{ mol} = (0.10 \text{ M})(V)$$

$$V = \frac{6.25 \text{ mol}}{0.10 \text{ M}} = 62.5 \text{ mL } \text{Ca}(\text{OH})_2$$